
REUNITE: A Recursive Unicast Approach to Multicast

Ion Stoica T.S. Eugene Ng Hui Zhang

March 2000

CMU-CS-00-120

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

An earlier version of this paper appeared in Proceedings of IEEE INFOCOM 2000.

This research was sponsored by DARPA under contract numbers N66001-96-C-8528, F30602-99-1-0518,

and E30602-97-2-0287, and by NSF under grant numbers Career Award NCR-9624979 ANI-9730105, and ANI-

9814929. Additional support was provided by Intel, Lucent, and Ericsson.
Views and conclusions contained in this document are those of the authors and should not be interpreted as

representing the official policies, either expressed or implied, of DARPA, NSF, Intel, Lucent, Ericsson or the U.S.

government.

DISTRIBUTION STATEMENT A
Approved for Public Release

DTIC QUALITY INSPECTED 3 Distribution Unlimited 20000412 087

Keywords: Multicast routing, state reduction, incremental deployment, load balancing.

Abstract

We propose a new multicast protocol called REUNITE. The key idea of REUNITE is to use recur-

sive unicast trees to implement multicast service. REUNITE does not use class D IP addresses.

Instead, both group identification and data forwarding are based on unicast IP addresses. Com-

pared with existing IP multicast protocols, REUNITE has several unique properties. First, only

routers that are acting as multicast tree branching points for a group need to keep multicast for-

warding state of the group. All other non-branching-point routers simply forward data packets by

unicast routing. In addition, REUNITE can be incrementally deployed in the sense that it works

even if only a subset of the routers implement the protocol. Furthermore, REUNITE supports load

balancing and graceful degradation such that when a router does not have resources (forwarding

table entry, buffer space, processing power) to support additional multicast groups, the branch-

ing can be automatically migrated to other less loaded routers. Finally, sender access control

can be easily supported in REUNITE. Although in REUNITE, routers in a multicast tree still need

to maintain control path state, we discuss a variant of REUNITE in which routers do not need to

maintain any control path state. However, this is achieved at the expense of having two additional

protocol message types, and a slightly more complex protocol.

1 Introduction

IP multicast, which was proposed by Deering in 1988, has two important components: the service

model and routing protocols [3]. In the IP multicast service model, a group of receiver hosts can

be identified by a single class D IP group address. Any host can send to the group by setting

the destination address in the IP header as the group address. Receivers can dynamically join

and leave the group. Such a service model provides a powerful abstraction for applications as

end hosts (senders and receivers) can utilize the service without having to keep track of the

membership of the group. It is the responsibility of IP multicast routing protocols to maintain the

membership information and to build multicast distribution trees to deliver packets from a sender

to all the receivers in a group.

Despite a decade of research and development, there are still open technical issues that make it

difficult to deploy IP multicast in the global Internet. From the point of view of routing, existing

IP multicast routing protocols [3, 1, 5, 4, 12, 9] scale poorly with large number of groups. In

particular, with current routing protocols, each router needs to maintain a multicast forwarding

table entry for every group whose distribution tree passes through the router. Therefore, the size

of the multicast forwarding table needs to grow with the number of active groups, which results

in higher router cost and lower forwarding performance. From the point of view of the service

model, the current model requires each new group to be allocated a globally unique address. This

is difficult to do in a large-scale distributed environment [8]. In addition, the current model does

not provide means to control who is allowed to send to the group - any host can send to any

IP multicast address. While this is also the case for IP unicast, the waste of network resources,

disruption or denial of service by unauthorized senders can be greatly amplified in the case of

multicast due to the potentially large number of receivers in the group [9].

Several schemes (e.g., Simple Multicast [12] and EXPRESS [9]) have been proposed recently

to tackle the address allocation and the sender access control problems. In these schemes, there

is a special node (sender or core) associated with each group and the group is identified by a two-

tuple <special node's unicast IP address, class D multicast address>. The allocation of group

address becomes trivial as by locally enforcing the uniqueness of the class D addresses used at

each node, the uniqueness of the two-tuples are enforced. In addition, access control of senders

can be supported by forcing all packets to go to the special node to be authenticated before being

multicasted to the receivers.

While these proposals address some important issues related to the service model of IP mul-

ticast, the scalability problem of IP multicast routing still remains. In this paper, we propose

a novel multicast scheme called REUNITE (REcursive UNicast TreE) to address the scalability

issues. Unlike all existing IP multicast protocols, REUNITE does not use class D IP addresses.

Instead, both data forwarding and group identification are based on unicast IP addresses. Mul-

ticast data forwarding is implemented with a novel technique called recursive unicast. A group

is identified by a two-tuple < root JP „address, root .port .number > where the root node can

be either the sender or a special node. Compared with existing IP multicast solutions, REUNITE

has several important advantages:

Enhanced Scalability by Reduction of Forwarding State With REUNITE, only routers that

are acting as multicast tree branching points for a group need to keep multicast forwarding state

of the group. Non-branching-point routers simply forward packets by unicast routing.

No Need for Class D IP Address With REUNITE, a multicast group is identified by a two tuple

< unicast JP„address, port.number > and there is no need for a separate block of class D IP

addresses. In this case, the allocation of unique group identification becomes trivial. In addition,

the maximum number of simultaneously active multicast groups increases dramatically.

Native Support for Incremental Deployment Since unicast addresses are used as destination

addresses in the IP header, a router that does not implement REUNITE will simply forward the

packets to the next hop based on the unicast destination address, without any adverse effect on

the protocol other than the potential loss of efficiency. This allows REUNITE to be incrementally

deployed only at a subset of network nodes, without the need of tunnelling.

Load Balancing and Graceful Degradation With REUNITE, when a router does not have re-

sources (forwarding table entry, buffer space, processing power) to support additional multicast

groups, it can simply ignore further protocol messages and the branching point will be automati-

cally migrated to other routers.

Support for Access Control Access control can be implemented by authenticating senders at the

root node.

Figure 1: Traceroute experiment from CMU to 15 U.S. sites.

2 Multicast Scalability and Sparse Groups

As discussed in Section 1, existing multicast protocols are not scalable with respect to the num-

ber of simultaneously active groups. This is because each router needs to maintain a multicast

forwarding table entry for every group whose distribution tree passes through the router. Tech-

niques such as hierarchical address assignment and forwarding based on longest prefix match,

which achieve great reduction in the unicast forwarding table size, cannot be easily applied to

multicast [10].

While the number of multicast groups can be large, we speculate that a majority of the groups

will be very sparse. An important observation is that when the members of a multicast group is

distributed sparsely in the network, the data delivery tree of the group is likely to have a large

number of non-branching routers or routers that have only one downstream router. To illustrate

this point, we obtained results from a set of traceroute experiments1 from Carnegie Mellon Uni-

versity to 15 U.S. sites and constructed the resulting tree as shown in Figure 1. Assuming routing

is symmetric, DVMRP [3] would create the same tree for CMU multicasting to these 15 des-

tinations. Clearly, most of the routers in the tree are non-branching. For example, on the path

from CMU to receiver R5, 15 out of 16 routers are not performing any multicast operations other

than forwarding the packets to the next hop. Furthermore, in the entire multicast tree, there are

only 8 branching points out of 97 routers. With most existing multicast protocols, even these

1 We thank Sanjay Gopinatha Rao for providing us with these data.

S
MFT

SI Rl

/\
...

Nl
 f MFT

Sj R1IR3
N2 ...

MFT
N3 S ! R3IR2

...
(S,R1)/

o
Rl

(S,R2)/

©
R2

l^ N4

(S,R3)

R3

Figure 2: Example of packet forwarding in REUNITE. Packets are sent via unicast and replicated

at branching points.

non-branching routers need to maintain for this group a multicast forwarding entry, which is an

important scarce resource in multicast routers.

In this paper, we propose a new multicast protocol called REUNITE. One of its main advan-

tages is that non-branching routers do not need to maintain the forwarding state for the group.

This has the potential of greatly reducing the size of multicast forwarding table in a network that

has a large number of sparse groups.

3 REUNITE Addressing and Forwarding Algorithm

The key idea of the REUNITE protocol is to use recursive unicast to implement multicast service.

For each group, REUNITE builds a delivery tree rooted at a specially designated node called root.

Every branching node of the tree maintains a list of receivers' addresses. A receiver R is said

to have joined the multicast tree at node N if #'s address is maintained at N. In REUNITE, a

receiver's address is maintained at exactly one node in the group's delivery tree. To multicast a

packet, the root sends a copy of the packet to each receiver in its list. Similarly, when a branching

node forwards such a packet, it sends a copy of the packet to each receiver in its own list. This

procedure continues recursively until packets reach all leaf nodes of the tree, i.e., all receivers.

Consider the example in Figure 2, which shows a multicast group with three receivers. As-

sume S is the source and the root, Rl joins at S, R3 at N3, and R2 at N4. Note that only N3 and

N4 are branching nodes; Nl and N2 are not. The list of receivers maintained by each node is

shown in the last entry of the corresponding tables. When S multicasts a packet, it simply sends

the packet to all receivers in its list, which in this case consists only of Rl. When JV3 forwards

this packet it also sends a copy to R3, which is the only receiver in its list. Finally, when the copy

traverses Ar4, N4 makes another copy and sends it to R2.

Using unicast addresses instead of class D addresses for data delivery is a key difference be-

tween REUNITE and all existing IP multicast protocols [3, 1, 5, 4, 12, 9]. As a result, while

in these protocols each router in the multicast tree has to maintain multicast forwarding state,

in REUNITE multicast packets can be simply forwarded based on a router's unicast forwarding

table in any of the following cases: (a) the router is non-branching, (b) the router does not im-

plement REUNITE, or (c) the router runs out of multicast related resources such as forwarding

table entries. As will be discussed later, this results in three unique advantages of REUNITE:

(a) enhanced scalability due to reduction of forwarding state, (b) native support for incremental

deployment, (c) graceful degradation and load balancing.

We will present the details of the REUNITE addressing and forwarding algorithm in the rest

of this section, and describe the tree maintenance protocol in the next section.

3.1 Addressing

One of the key distinctive features of REUNITE is that it uses only unicast IP addresses for both

data forwarding and group identification purposes. In contrast, all existing IP multicast protocols

use class D IP addresses.

In REUNITE, there is a special root node associated with each group. While any node can

serve as the root, the source may be a more desirable choice in the case of single-source or

almost single-source applications [9]. A multicast group is identified by a two tuple < rootJP-

addr, rootjportJiumber>. This makes the generation of globally unique group identifiers trivial

as it only requires each of the root nodes to generate a locally unique port number.

For each multicast packet, the source and destination address fields in the packet header are

set to be the IP addresses of the root and one of the receivers in the group, respectively.

3.2 Forwarding Algorithm

For each multicast group, REUNITE builds a delivery tree that is rooted at the root node. Each

REUNITE router maintains a Multicast Forwarding Table (MFT) that contains an entry for every

multicast group whose data delivery tree branches at the router. An MFT entry has the following

format:

< root _addr, root .port >< dst, stale >

« rcvi,alivei >,...,< rcvn, aliven »

where < root.addr, root .port > identifies the group; dst is the IP address of the first receiver

that joins the group among all receivers in the downstream of the router; recvi, i = 1,..., n,

called the receiver list, are IP addresses of the receivers to which the router will send replicated

unicast packets when it receives a multicast packet from the group that is destined to dst; stale

and alive are boolean variables. MFT state is soft; unless it is refreshed, an entry becomes stale

in TOl seconds. Similarly, if not refreshed, each receiver list entry becomes not alive in TOl

seconds.

Consider again the example in Figure 2, where the stale, alive, and the source port number

are not shown for simplicity. Also, since the root does not use < dst, stale >, this is omitted.

Assume Rl joins the group first, followed by #3, and then R2. As can be seen, only the branching

nodes N3 and Ar4 have MFT entries for the group.

When a data packet with source address S, port number P, and destination address D arrives

at a node, the forwarding algorithm searches for the entry < S, P >< D, * > in the MFT (with

the exception of the root node, where D is not used). If the entry exists, the packet is duplicated

for each receiver in the receiver list of the group MFT entry. The destination address of each

duplicated packet is replaced by the corresponding receiver's IP address. The original packet

is simply forwarded based on its destination address. In the example, N2 will forward each

multicast packet as a unicast packet because it does not have a corresponding entry in its MFT

while N3 and N4 replicate the packet.

[MFT
Si Rl

.1.
)

MCT MFT
S Rl

MFT

MCT MFT
S Rl

' MCT MFT
1 SlRl R2

.1. ...' ,

f MCT MFT 1
'$&

^ J

f MCT MFT }
SlRl R2

I.)
(c)

MCT MFT
'^

— JOIN msg

— TREE msg
* Marked

TREE msg

f MCT MFT
\

^ J

(d) (e) (f) (g)

Figure 3: Example illustrating the tree creation and maintenance protocol of REUNITE.

4 REUNITE Tree Maintenance

As discussed earlier, the per group state in MFT at each branching router defines the multicast

forwarding tree. The states are installed and deleted by a control protocol. In this section, we

describe the control protocol that is used to create and maintain the MFT at each router. In

addition to the MFT, each REUNITE router maintains another table called the Multicast Control

Table (MCT). A more complex version of the protocol that does not require the MCT is discussed

in the Appendix.

A router's MCT contains an entry for every group whose multicast delivery tree passes but

does not branch at the router. A MCT entry has the following format:

< root-addr^rootjport >< dst >

where < root^addr, rootjport > identifies the group, dst is the IP address of the first receiver

that joins the group among all receivers in the downstream of the router. Again, MCT state is

soft, and unless it is refreshed, an entry times out in TOl seconds.

It is worth noting that if a REUNITE router is traversed by a multicast group's delivery tree,

the router will maintain an entry either in its MFT (in the case that the tree branches at the router)

or in its MCT (in the case that the tree does not branch). A natural question to ask is: since

a REUNITE router does maintain per group state, why is REUNITE more scalable than other

IP multicast protocols? The key observation is that only MFT needs to be maintained on the

data plane, while MCT, as will be discussed later, can be maintained on the control plane. That

is, when a data packet arrives, only MFT needs to be looked up. In contrast, MCT needs to

be looked up only when control messages are processed. Therefore, by partitioning per group

multicast state into forwarding and control state, REUNITE maintains a much smaller per group

forwarding table than other IP multicast protocols in a network with a large number of sparse

groups.

Unlike previous multicast protocols that only have control messages sent from receivers to

the source or core, REUNITE uses two types of control messages: JOIN message, which is uni-

casted periodically by each receiver towards the root, and TREE message, which is multicasted

periodically by the root along the multicast delivery tree. JOIN messages are used to create and

refresh the receiver entries in MFT, while TREE messages are used to create and refresh the

entries in MCT and to refresh the group entries in MFT.

To describe the tree creation and maintenance operations, we use a detailed example shown

in Figure 3. S is the source and the root of a group, Rl and R2 are the receivers, and Nl through

Ar4 are router nodes. To better illustrate the properties of REUNITE, we assume the following

asymmetric unicast routes: S -¥ Nl -»• 7V3 ->• Rl, Rl ->■ N2 -» ATI ->■ S, S -» N4 ->• R2,

and R2 ->■ N'3 -> Nl -» S. We omit the port number and the flags in the figures for simplicity.

In addition, we also omit < dst, stale > tuple from root's MFT, as it is not used by the root.

4.1 Joining a Group

Assume Rl is the first receiver that joins the group (Figure 3(a)). Since initially no router is

aware of the group, the JOIN message sent by Rl is propagated all the way to S. Upon receiving

this message, S creates an entry for Rl in its MFT. Since S maintains the MFT state for Rl, we

say Rl joins the multicast tree at S.

S then begins sending data packets to Rl. In addition, S also sends periodic TREE messages

down the delivery tree (Figure 3(b)). When a TREE message arrives at nodes A7! and N'i, their

MCT are updated to indicate that they are part of 5"s multicast forwarding tree. In particular,

packets destined for Rl traverse through them.

Before we continue the example, it is worth noting that in a network where the paths between

the root and a receiver are asymmetric, the JOIN and TREE messages will traverse different

paths. In this example, the JOIN message from Rl passes N'2, while the TREE message from S

passes Ar3. This is quite different from all existing multicast protocols in which JOIN messages

and data packets traverse the exact reverse paths. This is because, with REUNITE, each branch

of the data delivery tree is constructed based on the forward direction unicast routing towards the

receiver. In contrast, with other multicast protocols, the data delivery tree is constructed based on

the reverse direction unicast routing towards the sender. Therefore, in a network with asymmetric

links or paths, REUNITE may potentially generate a higher quality data delivery tree than other

multicast protocols.

Now, suppose R'2 joins the group by sending a JOIN message towards S (Figure 3(c)). Upon

receiving this message, Ar3, which is part of the multicast tree, becomes a branching node. This

is accomplished by removing the MCT entry for the group and creating a MFT entry for R2.

From now on, data packets and TREE messages sent towards Rl by S will be replicated and sent

to R2 by N3.

A receiver periodically sends JOIN messages to refresh the MFT entry at the router it joins.

These JOIN messages are discarded at the router and will not be propagated further. In this

example, RVs and #2's JOIN messages will reach S and N3, respectively.

4.2 Leaving a Group

To leave a group, a receiver simply stops sending JOIN messages. Consider the case where Rl

decides to leave the group (Figure 3(d)). Since the MFT entry for Rl at S is no longer refreshed,

after a time period of TOl seconds, S concludes that Rl has left. However, note that S cannot

stop sending data to Rl immediately, since other receivers (R2 in this example) might receive

data that are replicated from those sent to Rl. Thus, before S can remove the MFT entry for

Rl and terminate the unicast flow, it must allow these receivers sufficient time to discover a new

JOIN msg from R to S received

1

MFT|Sl.rcvJist[R|.alive = 1
Set timer T01

Forward
JOIN msg

Figure 4: Flowchart of JOIN message processing algorithm.

branch point to receive data from.

To accomplish this, S maintains the MFT Rl entry for an additional T02 seconds, but marks

it as being not alive (this is indicated by the shaded area in Figure 3(d)). During this time period,

S keeps sending data and TREE messages to Rl. However, these TREE messages are marked

stale to indicate that the data flow to Rl is to be torn down (Figure 3(e)). When Nl receives

such a TREE message with the stale bit set, it removes the corresponding entry from its MCT.

When JV3 receives such a TREE message, it marks its corresponding MFT entry as being stale as

well. As a result, the next JOIN message from R2 is no longer intercepted by either A"3 or Nl.

It eventually reaches 5' and a new MFT entry for R2 is created at S (Figure 3(e)).

From now on, S begins sending data and TREE messages to R2 and these packets pass

through node N4 (Figure 3(f)). The TREE messages are processed by NA as described before.

The MFT entry for R2 at S is refreshed by subsequent JOIN messages from R2. During the

time period until the stale MFT entry for Rl at S is removed, R2 will receive some duplicate

data packets. After T02 seconds, the stale state at S and JV3 for Rl is removed (Figure 3(g)). S

therefore no longer sends any data or TREE messages to Rl, and R2 will stop receiving duplicate

data packets.

10

TREE msg from S to R received

I

MFTlS].stnle = I
Set timer T02

MFT[SJ.dst = R
MFT[S].stale=0

Set timer TO I
Remove MFT[S|.rcvJist[RJ

Remove
MFTISl.rcv_lisl|R] I

Forward
TREE msg

Figure 5: Flowchart of TREE message processing algorithm.

4.3 Details of the Tree Maintenance Protocol

While the previous example illustrates most of the important operations of the protocol, it is

nonetheless a very simplified scenario. In this section, we specify the complete protocol by

describing the details of message generation, message processing, and timeout handling.

Message Generation JOIN messages are periodically generated by each receiver and are unicas-

ted to the root of the group. TREE messages are periodically generated by the root of the group

and are multicast forwarded based on the root's own MFT. In both cases the message generation

period should be less than TOl seconds.

Message Processing Algorithms The message processing algorithms at non-root nodes are pre-

sented in Figures 4 and 5. Group address < root.addr, rootjport > is abbreviated as S, and

dst-addr is abbreviated as dst.

The description of the JOIN message processing algorithm is implicitly covered in Sec-

tion 4.1. The flowchart of the TREE message processing algorithm involves several cases not

discussed in Section 4.2. Below, we briefly describe the other actions: (1), (2), and (3).

Action (1) is executed whenever a node that is a branching point for a group whose state is

stale receives a non-stale TREE message destined to a receiver R. This can happen when the

first receiver who joined at that node leaves the group, but there is another receiver who, in the

meantime, has joined the group at an upstream node. When such a message is received, the

11

group's entry in the MFT is refreshed. At the same time dst is set to the new receiver address R.

This indicates that from now on the node will replicate only data and TREE messages received

for R. In addition, the entry for R, if any, in the group's receiver list is removed.

Action (2) is performed when a receiver i?'s entry in the MFT is stale but the group entry is

not stale, and an unmarked TREE message to R is received. This can happen when receiver R

leaves the current node and joins at another node upstream (this may be caused by a change of

the route from R to S.) In this case receiver i?'s entry is simply removed from the MFT as there

is no longer any need to replicate and send packets to R at this node; the packets to R will be

replicated by the new branching node, at which R has just joined.

Action (3) is executed whenever a non-branching node receives a stale TREE message. The

action consists of simply removing the group entry, if any, from the MCT. This is because, the

stale TREE message indicates that, after at most T02 seconds, data and TREE message transmis-

sions may terminate, and as a result the node will no longer be part of the tree.

Finally, note that when a TREE message is replicated and forwarded to receiver R, if receiver

Ä's entry in the MFT is stale, then the replicated TREE message is marked stale.

Timeout Handling When a timeout TOl expires for an MFT group entry, the entire entry is

marked as stale. A second timeout T02 is set. When T02 expires, the entire MFT entry is

removed. When a timeout TOl expires for a receiver entry in an MFT entry, the receiver entry is

marked as not alive. A second timeout T02 is set. When TO'2 expires, the receiver entry in the

MFT entry is removed. When a timeout TOl expires for an MCT entry, the entry is removed.

5 REUNITE Advantages

Enhanced Scalability by Reducing Forwarding State Most of the existing multicast routing

protocols require every router on a multicast tree to keep forwarding state for the multicast group.

This is because forwarding is based on class D multicast addresses. In contrast, in REUNITE,

only routers that are acting as multicast tree branching points for a group are required to keep

multicast forwarding state of the group. All other non-branching nodes simply forward data

packets by default unicast routing. In effect, REUNITE removes unnecessary forwarding state

by converting it into control path state. As discussed in Section 2 this can lead to significant

savings, especially in large networks with many sparse groups.

12

f MCT MFT]
| S|R1|R2

.[. ...'
j

MFT
s Rl

N4 -*- JOIN msg

-*- TREE msg

| | REUNITE
aware node

R2 1 Regular node

Figure 6: Scenario illustrating the incremental deployability of REUNITE.

In the steady state, the amount of multicast forwarding state maintained in the entire network

for a group is O(r), where r is the number of receivers in the group. This is because each receiver

joins the multicast tree at exactly one node, and only that node maintains the receiver's state.

Note that this value is optimal for any multicast protocol that uses a tree topology. From a single

router's point of view, if all routers in the network implement REUNITE, in the steady state, there

is at most one receiver in a MFT entry for each of the input interfaces. This is because, in the

steady state, a link in a network can be traversed by JOIN messages from at most one receiver

per group.

Incrementally Deployable Most existing multicast protocols require every router in the network

to implement the protocol. This introduces a deployment problem as it requires all routers in

a network to be updated simultaneously. A possible solution is to use IP tunneling across the

regions of the network that are not multicast aware.

REUNITE, on the other hand, has native support for incremental deployment. Since all pack-

ets have unicast addresses, a router that does not implement REUNITE will forward the packets

as if they are unicast packets. This does not affect the correctness of the protocol but may lose

some efficiency. In the extreme case when no router implements our protocol, REUNITE degen-

erates into sending n unicast streams to n receivers from the root.

To illustrate, Figure 6 depicts the same scenario as in Figure 3(c), except that only node Nl

implements REUNITE. In this case, R2 will join the tree at node Nl, as node iV3 no longer

intercepts #2's JOIN messages. As a result, the packets destined to R2 will be replicated at Arl

instead of N3. Note that no tunneling is needed even though the down-stream node Ar3 is not

REUNITE-aware.

13

Load Balancing and Graceful Degradation In multicast protocols that requires every router

on a multicast tree to maintain forwarding state, if some of these routers are no longer able to

store this state, either because they are overloaded or they run out of memory, the multicast tree

will become partitioned. In contrast, since REUNITE does not require every router to process

protocol messages, a router that is overloaded can choose to ignore further JOIN messages and

let other upstream routers to process those messages and share the load.

For example, in the scenario shown in Figure 3(c), node N3 may choose to ignore a JOIN

message from R2. In this case the JOIN message will simply propagate up-stream. If ATI choose

to accept this message, then Rl will get multicast service from ATI. This results in the same tree

as shown in Figure 6. From the point of view of the new group, a router running out of forwarding

table entries exhibits the same behavior as a non-REUNITE-aware router.

Unique Group Identification. Generating globally unique group identification is trivial in RE-

UNITE as each root just needs to generate locally unique port numbers.

Support for Access Control REUNITE can also easily support sender access control. Since only

the root is allowed to inject multicast traffic into the network, access control can be implemented

simply by authenticating senders at the root node.

6 Discussion

6.1 Protocol Dynamics

While the use of recursive unicast has many desirable properties, it also introduces dynamic be-

haviors that do not exist in other multicast protocols. In this section, we describe some situations

with more complex dynamic behaviors and show that REUNITE can perform gracefully in these

situations.

Tree Restructuring Due to Member Departure In REUNITE, when a receiver leaves a group,

the corresponding branch in the data delivery tree will be removed and may affect other receivers

on the same branch. As explained in Section 4.2 and as shown in Figures 4 and 5, REUNITE has

mechanisms to restructure the delivery tree so receivers do not lose any packet as a result.

Race Condition of Joins In REUNITE, an MCT entry for a group is created when a router

receives a new TREE message generated as a result of a new receiver joining at an upstream node.

14

Before this TREE message traverses the new branch and establishes MCT state on the branch,

if another JOIN message from a second receiver arrives at a router on the branch, the message

would be propagated upstream. However, had the MCT state been established, the JOIN message

would have been intercepted by the router and this router would become the branching point for

the second receiver. Due to this race condition of JOINs, the branching point of the second

receiver is further upstream than necessary, resulting in a sub-optimal tree. Fortunately, the data

delivery tree will only be in this sub-optimal state transiently. This is because once the MCT

state has been established on the branch, subsequent JOIN messages from the second receiver

will be intercepted and a new optimal branching point will be created. The previous non-optimal

branching point will eventually timeout and be removed.

Duplicate Packets During Tree Restructuring As discussed in the previous paragraph, and also

in Section 4.2, it is possible that during short time periods a receiver get duplicate packets. To

reduce the number of duplicate packets, additional techniques can be used. For example, when

a receiver joins the multicast tree at a node, the node can generate a TREE message immediately

towards the receiver. This will update the MCT tables of nodes on the new branch immediately,

without having to wait for the next TREE message generated by the root. With this technique,

the time window during which new receivers cannot join at nodes on the newly created path is

greatly reduced.

6.2 Multiple Senders

So far, we have assumed that the root is the only sender in a group in REUNITE. In this section

we show how REUNITE can be extended to support multiple senders. The idea is to have the

root acting like a "reflector". Suppose a host wants to multicast a packet to a group with address

< root.addr, root.port >. Then, it will simply send a unicast packet with the destination address

and port number set to root.addr, and root-port, respectively. When the root node receives the

packet and determines that < root_addr, root.port > corresponds to a multicast group rooted

at itself, it just multicasts the packet to the group. Note that access control can be implemented

easily by authenticating each sender before multicasting their packets.

We note that the mechanism to accommodate multiple senders in REUNITE is similar to the

session relay approach proposed in EXPRESS [9]. However, unlike EXPRESS, our solution does

15

not require an application level layer or IP encapsulation for unicasting packets from a sender to

the root. Thus REUNITE can be implemented more efficiently.

However, this simple solution has several drawbacks. First, since all messages have to go

through the root, any network partition or root failure will compromise the entire group. To

alleviate this problem, a possible solution is to have a backup root, and use it whenever the

primary one fails. Second, the transmission delay can become larger than directly unicasting a

packet to the destination. However, we believe that for most applications, such delay increase is

acceptable.

In comparison, solutions based on bidirectional trees, such as CBT or Simple, are more robust.

In particular, in these solutions, members of a group may be able to communicate even if the core

node fails. However, if access control is required, then this advantage is negated, as a special

designated node, e.g., the core node [12], is assumed to perform this task.

6.3 Source Address Spoofing and Ingress Filtering

In REUNITE, when a router duplicates packets, it rewrites the destination address field in the

packet header, but keeps the source address field to be the root address instead of over-writing the

field with its own address. From the point of view of a router down-stream, this is equivalent to

source address "spoofing". Routers implementing ingress filtering [7] interpret this as a security

attack and automatically drop such packets. This problem is also shared by other protocols, such

as Mobile IP [11].

In a network in which all routers implement REUNITE, a possible solution to protect against

source address spoofing attack is to authenticate TREE messages and add in each MFT entry a

UpStreamlnterface field which is set to be the interface that the group's TREE message comes

from. A multicast data packet is only forwarded if it comes from the UpStreamlnterface. In

a network in which not all routers implement REUNITE, protocol modification is needed to

accommodate both REUNITE and ingress filtering. One solution is to use an IP option to store

the root address and rewrite source address field whenever a packet is duplicated. The advantage

of this approach is that it is compatible with non-REUNITE-aware routers that implement ingress

filtering. The disadvantage is that it adds extra overhead in packet processing.

16

6.4 Unicast Packet Forwarding

When a REUNITE router receives a packet, it extracts the source and destination addresses and

the source port number from the packet, and performs a lookup in the MFT. If the entry is not

found, then a second lookup is performed in the IP forwarding table. Thus, when a regular

unicast packet is received, two lookups are required. However, we note that since the MFT

lookup involves an exact match as opposed to a longest-prefix-match, it can be performed faster

than an IP forwarding table lookup.

6.5 Efficiency of Packet Replication

As discussed in Section 3.2, REUNITE's MFT stores a list of receiver addresses to each of which

a unicast packet needs to be sent. In contrast, the forwarding table of other multicast protocols

stores the list of output interfaces to each of which a multicast packet needs to be replicated. This

can be implemented efficiently by using a bitmap of output interfaces and leveraging the packet

replication capabilities in the switch backplane.

Despite the MFT table's content is different, REUNITE's packet replication algorithm can

also be implemented efficiently. The content of the MFT can be distributed among input and out-

put ports of the router. At the input, an MFT entry will contain only < root-addr, root-port ><

dst-addr, stale >< port-mask >, where port-mask is a bit mask which specifies the output

ports to which a multicast packet needs to be forwarded. The receiver list associated to each

group entry will be stored at the corresponding output ports. Therefore, packets can be repli-

cated based on bitmaps and transmitted across the backplane in a fashion similar to existing IP

multicast protocols. Rewriting the destination address field of duplicated packets can be done at

corresponding output ports.

6.6 Accommodating Multicast-Capable Subnets

So far we have described REUNITE assuming a point-to-point network. However, many of

the LAN and WAN technologies have native support for multicast. Sending individual unicast

messages to each of the receivers in a multicast-capable subnet such as Ethernet is very inefficient.

A possible solution is to map a REUNITE group onto a local IP multicast group in such a

network. Before joining, an end-host first sends a request containing a REUNITE group address

17

to the local gateway. The local gateway maps this REUNITE group address onto a local IP mul-

ticast group address and replies the end-host with this local IP multicast address. Subsequently,

the end-host joins the local IP multicast group by using IGMP [3, 2, 6]. The local gateway will

then join the REUNITE group on behave of the local receivers. When a REUNITE packet is

received by the local gateway, it translates the destination address and forwards the packet onto

the local IP multicast group. There are two points worth noting. First, the IP multicast address

allocation is simple because this address only has to be locally unique.2 Second, this solution

does not require changes in IGMP, or in the end-host's IP protocol stack.

7 Simulation Experiments

We have implemented REUNITE in ns-2 [14]. In this section, we present results from three

simulation experiments, illustrating three aspects of the protocol: graceful degradation and load

balancing, incremental deployment, and dynamic join/leave of receivers.

7.1 Experiment Design

Due to the high overhead incurred by ns-2's packet-level simulation, we limit the simulation time

to 60 seconds. In all experiments, senders become active during the first second and remain

active afterwards. In the first two experiments, receivers join groups during the first ten seconds

and remain active until the simulation ends. To remove the transient, in the first two experiments

we report only the results for the last 50 seconds of the simulations, after all receivers have joined

their groups. In the third experiment, receivers join and leave dynamically. Since the simulation

time is short, we set the refresh period of the JOIN message to 2.5 sec. Correspondingly we set

both timeouts TOl and T02 to 5 sec. Finally, all senders are assumed to send constant bit rate

traffic with 1000 byte packets every 100 ms.

We use two performance metrics: Average Redundancy (AR), and Maximum Redundancy

(MR). AR is defined over an interval [t1,t2) as

2 We assume that the hosts in the subnet are only using REUNITE multicast. Otherwise, if both REUNITE and

IP multicast are simultaneously used, then we assume that a block of class D IP addresses is exclusively allocated

for REUNITE.

18

Senders (Groups) 3.5

Receivers

(a)

rr
<

2.5 ;

link 1 -+-
link 2 --<-
link 3 ■■=>--

6 8 10 12 14
Multicast Forwarding Table (MFT) size

(b)

16

Figure 7: (a) Experiment involving 16 groups with four receivers subscribing to each group, (b)

Average redundancy (AR) of links 1, 2 and 3, versus the number of entries in each MFT.

AR(tllt2) = Pt(h,h
(1)

Pu\tl,t2)

where Pt{tut2) is the total number of multicast packets, and Pu(tut2) is the total number of

unique multicast packets sent during the interval \t\,t2). For example, the AR of link N\ : N3

depicted in Figure 6 is two, since the link is traversed by two copies of each packet, one that is

sent to Rl and the other that is sent to R2.

MR is defined as the maximum number of copies of a packet, including the original, that

traverse a link. Again, in Figure 6, the MR for link Nl : A^3 is two.

Note that AR and MR are always greater than or equal to one. Ideally, we want both to be

equal to one, i.e., a link is traversed by only one copy of a packet.

7.2 Load Balancing and Graceful Degradation

In this experiment, we illustrate the behavior of our algorithm when routers do not have large

enough MFTs to accommodate the entire multicast forwarding state.

For clarity, we use a simple topology as shown in Figure 7(a). There are 64 receivers and

16 groups and there are four receivers subscribing to each group. Ideally, we would like packets

from each group to be replicated at node N4. However, this would require N4 to have at least 16

19

Figure 8: MCI backbone topology. There are 8 groups and 64 receivers, randomly placed.

entries in its MFT, one for each group. If the MFT has less than 16 entries, some of the receivers

will have to join at other routers up-stream, which will increase network load. As an example,

assume that each router can store no more than six group entries in their MFTs. Then, NA and

N3 will store six group entries each, while N2 will store the remaining four. Consider a group

that is stored at N2's MFT, it is easy to see that both links 2 and 3 are traversed by four copies of

each packet of this group, one for each of its receivers. Figure 7(b) plots the average redundancy

(AR) along links 1, 2, and 3 versus the number of entries in the MFT. As expected, AR decreases

as the MFT size increases. When MFT size is 16, AR becomes one as every receiver is able to

join its group at node NA.

There are two points worth noting. First, even if a router does not have enough space in its

MFT, the protocol continues to operate. Second, to reduce the network traffic it is more effective

to have routers with large MFTs near the receivers rather than the senders, as this allows receivers

to join their groups at routers in close proximity.

7.3 Incremental Deployment

In this experiment, we illustrates the incremental deployability of REUNITE and how the number

of REUNITE-aware routers affects the performance. Here, we consider a more realistic topology,

the MCI backbone network3 shown in Figure 8. We assume there are 8 senders (or groups) and

64 receivers. Both senders and receivers are randomly placed, with the only restriction that no

sender and receiver are connected to the same router. We vary the percentage of routers that are

3Topology obtained from www.caida.org in October 1998.

20

% REUNITE routers 0 20 40 60 80 100

AR 2.063 1.697 1.418 1.257 1.132 1

MR 12 8 5 4 3 1

Table 1: AR and MR along any link as the percentage of REUNITE-aware routers varies.

REUNITE-aware from 0 to 100 % in increments of 20%. For each percentage value p, we make

ten independent simulations with random REUNITE-aware router assignment.

Table 1 shows the AR and MR for the entire network versus the percentage of routers that are

REUNITE-aware. As expected, as more routers become REUNITE-aware, the lower the AR is.

Note that when no router is REUNITE-aware, all receivers join directly at the senders, and thus

the protocol degenerates into the sender generating unicast messages for each of the receivers.

Note that MR is significantly larger than AR. In fact, if no router is REUNITE-aware, MR is as

high as 12. Again, as the percentage of REUNITE-aware routers increases, MR decreases. When

all routers are REUNITE-aware, no link carries duplicate packets, i.e., MR = 1.

7.4 Performance with Dynamic Joins and Leaves

In REUNITE, a receiver leaving a group may cause other receivers to have to re-join the group

at different nodes. As explained in Section 4.2, this may result in duplicate packets being sent

to those receivers. To characterize the overhead, we conduct another experiment based on the

MCI topology with all routers being REUNITE-aware. As before, there are 8 senders (or groups)

and 64 receivers randomly placed. Each receiver joins and leaves the group based on an on-off

process, where the active and inactive periods are exponentially distributed with means of 25 sec

and 5 sec, respectively. This rather dynamic scenario is meant to stress test the algorithm. To

gauge the overhead of the REUNITE protocol we compute AR over ten independent trials. The

resulting average AR value is less than 1.06. Thus, REUNITE loses less than 6 % in efficiency,

as compared to an ideal multicast protocol that uses the same distribution trees. In addition,

the measured MR is no larger than 3. This shows that there are no significant hot-spots in the

network.

21

8 Related Work

In [13], a scheme was proposed to achieve similar state reduction at non-branching nodes as RE-

UNITE. However, it requires dynamically setting up tunnels between adjacent branching routers

in a multicast tree. Using an additional layer of IP header introduces 20 more bytes overhead in

each header and also may result in packet fragmentation. In addition, to support dynamic mem-

bership, a sophisticated and complex control protocol is needed to dynamically set up and tear

down tunnels. In contrast, REUNITE achieves the state reduction without the need for tunnelling.

The tree maintenance protocol in REUNITE exhibits similarities to other tree based proto-

cols [1, 4, 9]. However, each new branch of the data delivery tree in REUNITE is constructed

based on the forward direction unicast routing towards the receiver. In contrast, with other proto-

cols, the data delivery tree is constructed based on the reverse direction unicast routing towards

the sender.

Simple [12] and EXPRESS [9] augment the multicast class D address with a unicast address

of either the core or the sender respectively. This eliminates the address allocation problem

and provides support for sender access control. In contrast, REUNITE goes one step further

and eliminates the class D address altogether. Using only one unicast address to identify the

group makes it possible to provide additional features, such as reduced forwarding state, native

incremental deployability, load balancing, and graceful degradation.

Our mechanism to provide support for multiple senders is similar to the session relay mech-

anism proposed in EXPRESS [9]. Unlike EXPRESS however, our solution does not require an

application level layer or IP encapsulation for unicasting packets from a sender to the root.

9 Conclusion

In this paper, we propose a novel approach, called REUNITE, that supports multicast service

based on recursive unicast in IP networks. To the best of our knowledge, REUNITE is the only

IP multicast protocol that uses only unicast addresses for both multicast forwarding and group

identification. All other IP multicast protocols need class D addresses. By using recursive uni-

cast to support multicast, REUNITE achieves many unique advantages. First, it does not require

non-branching routers to maintain per group forwarding state. In addition, it is the only protocol

22

that provides native support for incremental deployment, load balancing and graceful degradation

when there are hot spots. To work in a network with unicast-only routers, all existing IP multicast

solutions need to use tunnels. In addition, none of the existing solutions can recover gracefully

from a scenario when a multicast request is made to a router that has run out of multicast for-

warding table entries. A more complex version of REUNITE that eliminates control path state

is discussed in the Appendix.

A direction for future work is to study how to implement address aggregation in REUNITE

to achieve further reduction of forwarding state.

References

[1] Ballardie A. Core based trees (CBT) multicast routing architecture, September 1997. RFC-

2201.

[2] S. Deering. Host extension for IP multicasting, August 1989. RFC-1112.

[3] S. Deering and D. R. Cheriton. Multicast routing in datagram internetworks and extended

LANs. ACM Transactions on Computer Systems, May 1990.

[4] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacobson, C. Liu,

P. Sharma, and L. Wei. Protocol independent multicast - sparse mode (pim-sm): Protocol

specification, Jun. 1997. RFC-2117.

[5] D. Estrin, D. Farinacci, V. Jacobson, C. Liu, L. Wei, P. Sharma, and A. Helmy. Protocol

independent multicast - dense mode (pim-dm): Protocol specification. Work in Progress.

[6] W. Fenner. Internet group management protocol, version 2, Nov. 1997. RFC-2236.

[7] P. Ferguson and D. Senie. Network ingress filtering, Jan. 1998. RFC-2267.

[8] M. Handley. Session directories and internet multicast address allocation. In Proceedings

of ACM SIGCOMM'98, Vancouver, BC, Canada, September 1998.

[9] H.W Holbrook and D.R. Cheriton. IP multicast channels: EXPRESS support for large-

scale single-source applications. In Proceedings of ACM SIGCOMM'99, Cambridge, Mas-

sachusetts, Aug. 1999.

23

[10] S. Kumar, P. Radoslavov, D. Thaler, C. Alaettinoglu, D. Estrin, and M. Handley. The

MASC/BGMP architecture for inter-domain multicast routing. In Proceedings of ACM

SIGCOMM'98, Vancouver, BC, Canada, September 1998.

[11] C. Perkins. IP mobility support, October 1996. RFC-2002.

[12] R. Perlman, C. Lee, T. Ballardie, J. Crowcroft, Z. Wang, T. Maufer, C. Diot, J. Thoo, and

M. Green. Simple multicast: A design for simple, low-overhead multicast. Internet Draft,

Internet Engineering Task Force, March 1999. Work in progress.

[13] J. Tian and G. Neufeld. Forwarding state reduction for sparse mode multicast communica-

tion. In Proceedings ofINFOCOM'98, San Francisco, California, Mar. 1998.

[14] UCB/LBNL/VTNT. Network simulator, ns (version 2). http://www-mash.cs.berkeley.edu/ns,

1999.

Appendix: Eliminating Control Path State

In the control protocol described in Section 4, each router needs to maintain a MCT on the control

plane. The purpose of having MCTs is to mark routers that are not branching points as a part of

the multicast tree. With this information in the control path, new branching points can be easily

created using JOIN messages.

In this section, we describe a modified version of the control protocol, called REUNITE II,

that eliminates the need for maintaining MCTs at routers. In addition, it also eliminates the race

condition of joins experienced by REUNITE (see Section 6). As will be discussed later, these

benefits are achieved at the expense of having more protocol message types and slightly more

complex protocol state machines than the original control protocol. In the following, we will

describe REUNITE II, and discuss the tradeoffs between REUNITE and REUNITE II.

In order to remove MCTs, we need to introduce a new mechanism to create branching points

for new receivers. The key idea is to rely on the forwarding path to discover where a new receiver

can join the tree. The outline of REUNITE II is as follows. As in REUNITE, each receiver sends

periodic JOIN messages towards the root node. These messages are intercepted by the first node

that maintains group state on the messages' paths. Note that unlike REUNITE, in REUNITE

24

MFT
S Rl

...
\)

(a)

' JOIN msg

■ BRANCH msg

Figure 9: Example illustrating the join operation when all nodes are REUNITE II aware.

II the JOIN message can be intercepted only by nodes that are already branching points in the

multicast tree, as these are the only nodes that maintain group state in their MFTs. Once a node

intercepts a JOIN message, it either inserts the new receiver in its MFT (if the node is a "suitable"

branching point for the receiver), or generates a new message, called BRANCH, and forwards it

down the tree. The purpose of the BRANCH message is to find a branching point for the new

receiver. Ideally, a branching point is created at the first node at which the path towards the new

receiver diverges from the path followed by the BRANCH message.

To illustrate this procedure, we consider a setting similar to the one previously shown in

Figure 3. The only difference is that, in order to better illustrate the behavior of the protocol,

the path from S to R2 is changed 4 to S -> M -> N3 -► R2. The operations of REUNITE

II are shown in Figures 9 and 10. For simplicity, TREE messages are not shown. We consider

two cases: (a) all nodes implement REUNITE II, and (b) only a subset of nodes implements the

protocol.

0.1 Join Operation When All Nodes Implement REUNITE II

Figure 9 shows the main messages exchanged as a result of Rl and R2 joining the group. Rl

joins first by sending a JOIN message towards the root (Figure 9(a)). Since no node maintains

multicast state, the message is delivered to the root S. Upon receiving the message, node S

creates an entry for the new receiver, as this is the first receiver to join the group. Note that this

4If we maintain the same route, i.e, S -> N4 -» R2, there would be no interaction between Rl and R2 in

REUNITE II, as both of them would join at S.

25

(S,R1),R2,Sä

(S,R1),R2

f MFT 1
SjRl|R2

...'
()

(R1,N1),S,R2\

•esjfjaaiaeoia JOIN msg

-*■ - BRANCH msg

^""^ FORCED JOIN
msg

D REUNITE
aware node

■ Regular node

(a) (b) (c) (d)

Figure 10: Example illustrating the join operation for the case when only node Arl implements

REUNITE II.

is virtually identical to the behavior of the original protocol depicted in Figure 3(a).

Next, R2 joins by sending a JOIN message towards S (Figure 9(b)). When S intercepts this

message it first checks whether there is any receiver in the MFT of S that uses the same output

interface as R2. In this example, such a receiver, R\, exists, as both paths S ->■ Rl and S ->• R2

share the link S : Nl. As a result, node S generates a message, called BRANCH, and sends it

towards Rl. The message contains a field that specifies the group S, and a field that specifies the

receiver that wants to join, i.e., R2.

When the BRANCH message arrives at Nl, Nl checks whether the traffic towards Rl and

R2 uses the same output interface. Since this is the case, the BRANCH message is just forwarded

to the next node N3. Upon receiving the BRANCH message, N3 checks similarly whether the

next node along the paths towards Rl and R2 is the same. Since this is not the case, N3 concludes

that it is a branching point for R2 and as a result it installs the corresponding state in its MFT

(Figure 9(b)). Subsequent JOIN messages sent by R2 will be intercepted directly by N3, and is

used to refresh RTs entry in the MFT (Figure 9).

0.2 Join Operation in a Heterogeneous Network

In the previous example we have assumed that all nodes implement REUNITE II, and that each

node has enough resources to create new entries in the MFT. Next, we show that the protocol

can be extended to handle the case when only a subset of nodes are REUNITE II aware, and/or

there are nodes that may refuse to accept a new receiver. The main difficulty is, if a BRANCH

26

message is propagated beyond the last usable REUNITE II node on the path, no branching point

can ever be created for the receiver. Consider again Figure 9(b). Assume that NS does not have

enough resources to create a new entry for group S. As a result, node NS will simply forward

the message to Rl without creating any branching point for R2.

To address this problem we introduce a new message, called FORCED JOIN that is generated

by a receiver upon the arrival of a BRANCH message. In addition, the BRANCH message needs

to carry another field that maintains the last node along the path that can be used as a branching

point. Consider the scenario in Figure 10. Assume that only Nl is REUNITE II aware, N2, N3,

and A"4 are not. Rl joins first, and as in the previous case, S simply inserts Rl to the receiver list

upon receiving the JOIN message from Rl (Figure 10(a)).

Next, R2 joins the group. Upon receiving the first JOIN message, S generates a BRANCH

message (Figure 10(b)). Besides carrying the group S and the receiver R2, the message also

carries S as the last potential branching point for R2. The message is then sent towards Nl.

Since Arl is now the last node along the BRANCH message's path that can act as a branching

point for R2, the last potential branching point field in the BRANCH message is updated to Nl.

The message is then forwarded to N3, and since N3 does not implement the protocol, it simply

forwards the message to Rl. Upon receiving the BRANCH message, Rl immediately sends a

FORCED JOIN message to Nl. The message contains the group identifier S and the receiver,

R2, that has asked to join. Upon receiving this message, Nl creates a MFT entry for S and for

receiver R2. Subsequent JOIN messages from R2 will be intercepted by Nl and refresh #2's

MFT entry (Figure 10(c)).

We note that the use of FORCED JOIN messages is in fact not absolutely necessary. How-

ever, eliminating these messages would further increase the protocol complexity since TREE and

JOIN messages along with MFTs will need to be used to perform additional topology discovery

and management functions. Therefore we do not discuss these mechanisms here.

27

JOIN msg from R to S received

MFT[S].rcvJisl[Rl.alive= 1
Sei timer T01

Insert R in MFT|S].rcvJist

Send BRANCH msg
to R' with receiver R,
group S, iast node Self

■

Discard
JOIN msg

(a)
R. group S. last node L received

MFT[Sl.dst = R'
Remove MFT[Sl.rcv_iist[R']

MFT[S].sta1e = 0
\ SetiimerTOl

Forward BRANCH msg

Send BRANCH msg
to R" with receiver R,
group S, last node Self

insert R in
MFT[S].rcvJisi

Discard received
BRANCH msg

TREE msg from S to R received

1

MFT[Sl.sta!e = 1
Set timer T02

MFT[S].dst = R
MFTiS|.slale=0

Set timer TO 1
Remove MFT|S].rcvJist[R]

Remove
MFT[S].rcv_list[R]

Forward
TREE msg

(b)

FORCED JOIN msg from R" to Self wilh receiver R. group S received

I

iDscrt R in
MF17SJ.rcv.lisl

M(~nSJ.dst~ R
Remove

MFrjSJ.rcvJistIR'1
Insert R in

MFV|S|.rcv.list
MFT[SJ.siale=0

Set timer TO I

Insert (S.R-) in MPT
Insert R in

MFIlS|.rcv_.list

Discard
FORCED, JOIN msg

(c) (d)

Figure 11: Detailed message processing algorithms for the REUNITE II protocol.

28

0.3 Details of the REUNITE II Protocol

The detailed message processing algorithms for REUNITE II are presented in Figure 1 l(a)-(d).

The new JOIN message processing algorithm (Figure 11 (a)) contains modifications to eliminate

the MCT operations and to add the generation of BRANCH messages as described in the previous

examples. The new TREE message processing algorithm (Figure 11(b)) similarly includes mod-

ifications to remove MCT related operations. The algorithms for processing the new BRANCH

and FORCED JOIN messages are shown in Figure 11(c) and (d) respectively.

To reiterate, a BRANCH message contains three special fields, one specifying the group,

(< rootJP-addr, rootjportMumber >), to be joined, one specifying the receiver who wishes to

join, and one specifying the last node traversed by the BRANCH message which can become a

branching point. A FORCED JOIN message contains the group to be joined and the receiver to

be added.

Not shown in the figures is that, when a BRANCH message arrives at the receiver R', R'

generates a FORCED JOIN message which contains the receiver, R, who wishes to join, and the

group S to join. R' then sends the FORCED JOIN message to the last potential branching node

L.

Several actions in these figures are not discussed in the examples shown in Figure 9 and 10.

Action (1) shows how a BRANCH message is sometimes used to refresh MFT state created

by a previous BRANCH message. Action (2) is used to recursively send BRANCH messages

down the multicast tree in order to discover the branching point nearest to the receiver. Action

(3) and (4) are performed when there is previous stale MFT state in the node. This previous state

is replaced by the new information carried by the BRANCH/FORCED JOIN message.

0.4 Discussion

In this section, we compare REUNITE and REUNITE II by discussing their advantages and

disadvantages.

The obvious advantage of REUNITE II over REUNITE is that it eliminates the need for con-

trol path state. REUNITE II has yet another advantage. As discussed in Section 6, in REUNITE,

simultaneous joins can lead to a race condition such that a sub-optimal multicast tree is created

for short transient periods. The cause is that control path state is not instantaneously created in

29

REUNITE when a new receiver joins. In contrast, REUNITE II eliminates this problem. In RE-

UNITE II, simultaneous joins can independently discover the optimal branching points without

relying on any control path state, thus eliminating the race condition.

However, these advantages do not come for free because REUNITE II has a higher protocol

complexity. In particular, the REUNITE II protocol introduces two additional message types,

i.e., BRANCH and FORCED JOIN, and requires a receiver to be more actively involved in the

protocol by sending a FORCEDJOIN message every time it receives a BRANCH message.

The number of control messages required under REUNITE II can also be larger than un-

der REUNITE. When a receiver joins, up to two additional messages can be generated: one

BRANCH and one FORCEDJOIN. Moreover, if routing is asymmetric, even subsequent refresh

JOIN messages can trigger BRANCH messages. In Figures 9(c) and 10(d), since the path from

R2 to S is symmetric, JOIN messages refresh the MFT at Al directly. But if R2's JOIN messages

arrive at S through Ar4, then every JOIN will trigger a BRANCH message.

30

